UF_6 than many of the halocarbons and fluorinated halogens studied in the past (1, 4). Thus, reasonably good, low-temperature solvents exist for uranium hexafluoride, even among rather simple solvent molecules.

Registry No. UFa, 7783-81-5; COCl₂, 75-44-5; N₂O, 10024-97-2; SO₂, 7446-09-5

Literature Cited

- Galkin, N. P.; Sudarikov, B. N.; Zaitsev, V. A.; Vlasov, D. A.; Kosarev, V. G. At. Energ. (Engl. Transl.) 1961, 10, 138.
 Barber, E. J.; Posey, J. C.; Junkins, J. H. Report No. K-1075; Carbide and Carbon Chemicals Co.: Oak Ridge, TN, 1953.
 Kuykendall, W. C.; Jones, C. G.; Rapp, K. E.; Barber, E. J. Report No. K-1303; Union Carbide Nuclear Co.: Oak Ridge, TN, 1957.
 Toranou, J. V. Mikolawa, N. S.; Ukivawakawa, Y. a. Onalouskii, A.
- Tananaev, I. V.; Nikolaev, N. S.; Luk'yanychev, Yu. A.; Opalouskii, A. (4)
- A. Russ. Chem. Rev. (Engl. Transl.) 1961, 30, 654.
 (5) Wendolkowski, W. S.; Barber, E. J. J. Phys. Chem. 1958, 62, 750.
 (6) Rutledge, G. P.; Davis, W. J. Phys. Chem. 1959, 63, 166.

- (7) Fischer, J.; Vogel, R. C. J. Am. Chem. Soc. 1954, 76, 4829.
 (8) Katz, J. J.; Rabinowitch, E. "The Chemistry of Uranium the Element,
- Its Binary and Related Compounds"; Dover Publications: New York, 1951; Chapter 13.
- Hildebrand, J. H.; Prausnitz, J. M.; Scott, R. L. "Regular and Related (9) Solutions"; Van Nostrand-Reinhold: New York, 1970; pp 21 ff, 87, 207 ff.
- (10) Beattie, W. H.; Maier, W. B., II; Freund, S. M.; Holland, R. F. J. Phys. Chem. 1982, 86, 4351 (11) Landolt, H. H.; Börnstein, R. "Zahlenwerte and Functionen"; Band II,
- Teil 4; Springer-Verlag: West Berlin, 1961; p 228. Hoge, H. J.; Wechsler, M. T. *J. Chem. Phys.* **1949**, *17*, 617
- Giauque, W. F.; Ott, J. B. J. Am. Chem. Soc. 1972, 82, 2689. "International Critical Tables of Numerical Data, Physics, Chemistry, (13)(14)and Technology"; Washburn, E. W., Ed; McGraw-Hill: New York, 1928.
- "Zahlenwerte and Functionen"; Band IV, Teil 4; Springer-Verlag: (15)West Berlin, 1962; pp 717, 726.

Received for review June 27, 1983. Accepted October 21, 1983. This work was performed under the auspices of the U.S. Department of Energy.

Heat Capacities of Some Binary and Ternary Aqueous **Nonelectrolyte Systems**

Ian R. Tasker,[†] Sushil K. Suri,[‡] and Robert H. Wood*

Department of Chemistry, University of Delaware, Newark, Delaware 19711

Heat capacities of a variety of binary and ternary aqueous nonelectrolyte systems were measured and the data fitted to $C_{\rho,\phi} = C_{\rho,\phi} \circ + c_2 m + c_3 m^2$. The systems studied were aqueous solutions of acetamide, acetone, p-dioxane, dimethylformamide, ethyl acetate, formamide, hexamethylenetetramine, methyl formate, s-trioxane, and combinations of two of the above solutes. Internal consistency of data is very good and c_2 coefficients agree with literature values. However, small discrepancies of ${\it C}_{p,\phi}$ ° with literature values are observed, indicating a problem with the calorimeter.

Introduction

Heat capacities of binary and ternary aqueous solutions of myoinositol (IN), p-mannitol (MAN), cyclohexanol (CHEX), formamide (F), N,N-dimethylformamide (DMF), s-trioxane (T), and hexamethylenetetramine (HMT) were measured to complement recent enthalpy studies (1-5). Heat capacity measurements contribute to an understanding of solutions: details of structural effects have been found (6, 7), solute-solvent and solute-solute interactions have been uncovered (8-12), evidence of pseudophase transitions in binary aqueous organic systems (13) has been cited, and means have been provided for evaluating both the temperature dependence of excess thermodynamic properties (14) and isothermal compressibilities from isentropic compressibilities (15).

Much of the interest in heat capacity measurements has arisen in the past decade as a result of the widespread use of flow calorimeters, particularly those of the Picker type (16). Flow calorimetry offers a number of advantages over earlier techniques: higher sensitivity, elimination of vapor-space corrections, short response times, small sample size, and rapid collection of data. These inherent advantages, together with some elegant design features, make possible the use of "the general principle that it is preferable to measure heat capacities as a function of temperature and integrate to obtain enthalpies at various temperatures than to derive heat capacities from the temperature dependence of enthalpies" (15). This type of calorimeter is now being used for measurements at high temperatures (17-23). With the great importance now attached to heat capacity measurements, it is essential that the accuracy of the data should not be called into question. The results presented here give rise to some concern over this matter.

Experimental Section

Materials. The purification of myoinositol (1), p-mannitol (1), cyclohexanol (1), formamide (2), N, N-dimethylformamide (2), s-trioxane (3), and hexamethylenetetramine (5) used by one of us (I.R.T.) has been previously reported. The purification of acetamide, acetone, dioxane, ethyl acetate, formamide, hexamethylenetetramine, p-mannitol, methyl formate, and s-trioxane (used by S.K.S.) has also been reported elsewhere (24). Details of solution preparation and handling are also available (1-3, 5).

Apparatus and Procedure. Measurements were taken with a Sodev Model CP-C Picker-type flow heat capacity microcalorimeter (16, 25, 26). Essentially, two liquids (1 and 2) with heat capacities per unit volume of σ_1 and σ_2 are maintained at the same temperature and flow rate as they enter twin cells; here they are simultaneously heated in such a manner that their final temperatures are identical. If W_1 and W_2 are the electrical powers supplied to produce the temperature rise, then, under ideal circumstances (i.e., no heat losses), we have

$$\frac{W_2 - W_1}{W_1} = \frac{\sigma_2 - \sigma_1}{\sigma_1} \tag{1}$$

The instrumentation is arranged so that the difference in applied

[†]Current address: Alberta Research Coucil, Oil Sands Research Department, Edmonton, Alberta, Canada T6G 2C2.

[‡]Current address: Department of Chemistry, Indian Institute of Technology, Hauz Khas., Bombay 400099, India.

Table I.	Results of S.K.S. for Apparent	Molar Heat Capacities,	$C_{n,\phi}$ (J mol ⁻¹ K ⁻¹).	, of Aqueous Nonelectrol	yte Systems ^a

				·····, · ρ,φ (· ···· ·· · · · ·	,		
m ^b	$C_{p,\phi}$	$C_{p,\phi}(\text{calcd})$	Δ	<i>m^o</i>	$C_{p,\phi}$	$C_{p,\phi}(\text{calcd})$	Δ
	Acetamide	e (AC)			AC ·	+ F	
0.1640	152.00	151.73	0.27	0.1329	116.70	115.94	0.76
0.3102	151.40	151.53	-0.13	0.3034	115.45	115.83	-0.38
0.5060	150.85	151.26	-0.41	0.4999	114.80	115.69	-0.89
0.8993	150.90	150.73	0.17	1.3478	115.60	115.11	0.49
1.4810 1.8202	150.30	149.93	0.37	1.9918	114,45	114.67	-0.22
1.0202	145.20	145.47	-0.27		AC +	MAN	
0 1 5 0 0	Aceton	.e (AN)	o	0.1406	292.75	292.25	0.50
0.1790	223.65	223.20	0.45	0.2044	291.90	292.14	-0.24
0.2890	221.40	222.12	~0.72	0.5200	291.65	291.60	0.05
0.4309	220.54	220.07	-0.13	1 3762	290.20	290.91	-0.71
1,1961	213.13	213.20	-0.07	1.8849	289.40	289 27	0.13
1.9077	206.00	206.20	-0.20	2,000.00			0120
	Dioxano (I			0 1055	AC -	+ T 161.00	2.01
0 1374	197 70	198.19	-0.49	0.1035	159.00	160.39	-139
0.2994	195.20	195.93	-0.73	0.5286	156.50	158.43	-1.93
0.3519	196.00	195.19	0.81	1.0419	154.80	155.20	-0.40
0.6936	191.80	190.41	1.39	1.4950	152.45	152.36	0.09
0.8828	187.25	187.77	-0.52	2.0719	149.35	148.73	0.62
1.0258	186.80	185.76	1.00		τοισ	+ EA	
1.5340	175.90	178.65	-2.75	0.1682	282.25	281.31	0.94
2.1068	171.90	170.64	1.26	0.1951	281.15	281.02	0.13
	Ethyl Aceta	te (EA)		0.3040	279.60	279.82	-0.22
0.1720	368.63	368.73	-0.10	0.4868	277.35	277.82	-0.47
0.3315	364.82	364.80	0.02	0.7809	272.10	274.60	-2.50
0.4400	362.25	362.13	0.12		DIOX	+ F	
0.6971	351.50	351.60	-0.10	0.2868	139.95	139.36	0.59
0.8072	551.50	331.00	-0.10	0.3134	139.15	139.22	-0.07
	Forman	nide (F)		0.4966	137.75	138.27	-0.52
0.1452	77.80	77.87	-0.07	0.8526	136.60	136.43	0.17
0.2229	78.10	78.11	-0.01	1.1277	134.60	135.01	-0.41
0.4400	18.10	70.14	0.01	1.8215	131.65	131.42	0.23
0.3980	79.25	79.13	0.12		DIOX +	- HMT	
1.4793	80.70	80.84	-0.14	0.2181	200.55	199.20	1.35
2.2193	81.55	81.51	0.04	0.3574	195.20	196.56	-1.36
U	wom other longt	otuomino (UN)	τστ.)	0.5534	192.60	192.84	-0.24
0 1663	148 50	etramme (riv. 148`91	0.19	0.6258	190.25	191.47	-1.22
0.3035	148.85	148.97	-0.12	1.4499	174.50	175.65	-0.55
0.4909	149.70	149.87	-0.17	0.4.4.0.0	DIOX +	MAN	
1.0025	152.70	152.33	0.37	0.1189	316.30	314.92	1.38
1.4237	153.90	154.35	-0.45	0.2217 0.5514	313.10	314.19	-1.04
1.9707	157.15	156.97	0.18	1 0068	30840	308.64	-0.21
	Mannitol (MAN)		1.4643	305.10	305.40	-0.30
0.1151	432.55	432.59	-0.04	2.0676	301.55	301.13	0.42
0.2131	432.70	432.69	0.01		DIOX	<u>ь</u> т	
0.3313	432.85	432.82	0.03	0.1829	182 10	182.35	-0.25
0.5503	433.20	433.07	0.13	0.3515	181.70	181.28	0.42
0.8409	432.00 434.10	433.35	-0.79	0.6219	180.10	179.58	0.52
0.0010	101.10	(70)	0.00	1.1430	175.85	176.29	-0.44
0 1 5 9 1	Trioxa	ne (T)	0.07	1.6898	171.75	172.84	-1.09
0.1721	165.10	165.22	-0.07	2.2953	169.85	169.02	0.83
0.6236	163.50	163.34	-0.19		EA -	+ F	
1.0053	159.75	159.21	0.54	0.2006	219.95	219.57	0.38
1.7377	150.65	151.28	0.63	0.4408	217.20	217.20	0.00
2.0891	147.80	147.48	0.32	0.6369	214.10	215.26	-1.20
	AC + 1	DIOX		0.8292	213.75	213.36	0.39
0.1434	175.25	175.46	-0.21	1 3448	212.70	212.25	-0.07
0.2441	174.80	174.77	0.03	1.0110	200,20	200.21	0.01
0.5131	173.20	172.94	0.26	0.1956	EA +	MAN	0.00
0.9451	169.70	170.00	-0.30	0.1376	400.35 307 of	400.03	0.32
1.4524	167.00	166.55	0.45	0.5417	393 45	394 10	-0.65
2.1022	101.90	162.13	-0.23	0.7705	391.35	391.64	-0.29
	AC +	EA		1.0622	386.75	387.78	-1.03
0.1411	260.35	250.18	0.17	1.3989	384.35	383.32	1.03
0.2980	258.00	257.93	0.08		EA -	+ T	
0.0974 0.0059	203.10 940 90	203.02	~0.47	0.1421	267.90	268.03	-0.13
1.1377	246.15	245.20	0.00	0.2348	266.80	266.36	0.44
1.5571	239.75	239.82	-0.07	0.5514	260.55	260.66	-0.11
				0.8600	254.60	250.43	0.17
				1.5845	242.20	242.06	0.14

Table I (Continu	ed)						
m ^b	$C_{p,\phi}$	$C_{p,\phi}(\text{calcd})$	Δ	m ^b	$C_{p,\phi}$	$C_{p,\phi}(\text{calcd})$	Δ
	F +	HMT			HMT	+ MAN	·····
0.1362	114.40	115.30	-0.90	0.0882	290.30	290.51	-0.21
0.2427	116.10	115.42	0.68	0.1718	291.20	290.48	0.72
0.5721	116.60	1 ± 5.82	0.78	0.3942	291.70	290.40	1.30
1.1502	115.85	116.52	-0.67	0.7859	288.75	290.24	-1.49
1.8507	117.35	117.37	-0.02	1.1326	288.65	290.11	-1.46
2.4360	118.20	118.07	0.13	1.9258	290.95	289.80	1.15
	F +	MAN			HM	$\Gamma + T$	
0.1024	256.10	256.15	-0.05	0.1631	163.20	162.24	0.96
0.2023	255.80	256.22	-0.42	0.3323	161.20	161.85	-0.65
0.4711	256.90	256.42	0.48	0.6145	158.20	161.20	-3.00
0.8985	256.55	256.73	-0.18	1.1875	162.75	160.89	1.86
1.2642	257.50	256.99	0.51	1.6268	160.10	158.87	1.23
1.8099	257.05	257.39	-0.34	2.5027	155.45	156.85	-1.40
	F	+ T			MAI	N + T	
0.1488	122.75	122.89	-0.14	0.1589	298.65	298.63	0.02
0.2793	122.80	122.44	0.36	0.3440	298.05	298.14	-0.09
0.5217	121.90	121.62	0.28	0.6309	297.65	297.38	0.27
0.9622	119.20	120.11	-0.91	0.8409	295.85	296.83	-0.98
1.5807	118.40	118.00	0.40	1.1230	297.10	296.09	1.01
1.8787	117.00	116.99	0.01	1.9392	293.70	293.94	-0.24

^a Systems are listed in alphabetical order. ^b Units: mol kg⁻¹.

power ($\Delta W = W_2 - W_1$) is measured, yielding initially $\Delta \sigma$ (= σ_2 - σ_1), i.e.

$$\Delta \sigma / \sigma_1 = \Delta W / W_1 \tag{2}$$

Hence, the volumetric heat capacity of any liquid can be determined if it is run against another liquid of known σ . In practice, heat losses are present and it is necessary to determine a correction factor, *f*, from a chemical calibration using a sample of known heat capacity (*26*). Thus

$$\Delta \sigma / \sigma_1 = f(\Delta W / W_1) \tag{3}$$

Experimentally we have a choice of two operating procedures. The obvious procedure is to run each unknown liquid against a standard. An alternative technique is the stepwise procedure in which the first sample is run against a standard, then the second sample is run against the first sample, and so on. This procedure is recommended (27) since it reduces errors due to changes in volume at the interface between the reference and sample solutions. In addition, it is experimentally more convenient, allowing increased sensitivity of measurement (which outweighs the effects of small cumulative errors) and producing reliable results with small scatter. In the present work, some measurements were taken using the former single reference procedure (S.K.S.) and some using the latter stepwise procedure (I.R.T.).

 ΔW was monitored by using a Digitec 266 dc voltmeter and a Sargent Model SR strip chart recorder. Base current and zener potentials were measured with a Kethley Model 177 microvolt digital multimeter. Normally $W_1 = \simeq 110$ mW giving a ΔT of about 2 °C. Details of operation are available (28). Transport of solutions was achieved by using either gravity flow (S.K.S.) or a Sage Instruments Model 373 peristaltic pump. With gravity flow, the flow rate was monitored by measuring the average temperature rise of the sample and reference, T_0 . Flow rate was kept constant during a run by varying the height of the exit solution. However, tests showed that identical results were obtained without this small height adjustment. In order to prevent bubble formation, the solutions were kept under a slight positive pressure by placing the level of the exit solution above the calorimeter (by 20 cm for S.K.S., by 45 cm for I.R.T.). In several tests the solutions were degassed with no change in the results. The normal flow rates were 0.9 cm³ min⁻¹ for S.K.S. and 0.6 cm³ min⁻¹ for I.R.T. For volatile solutes, evaporation of the sample was controlled by reducing

vapor space and using containers with narrow openings. For two of the more volatile solutions (ethyl acetate and acetone) tests with a method which completely eliminated evaporation of the solution gave identical results.

Thermostating was achieved with a modified Coleman cooler and a Tronac PTC40 temperature controller (24). In the earlier experiments (S.K.S.), the vacuum in the instrument was produced by a single-stage rotary vacuum pump (Edwards Speedivac 2), whereas in later experiments (I.R.T.), a two-stage rotary vacuum pump (Welch Duo-Deal Model 1400) was used. All solutions were initially referenced against water, for which we used $c_p^{\ \circ} = 4.1796 \text{ J g}^{-1} \text{ K}^{-1} (16, 29)$ and $d^{\ \circ} = 0.997047$ g cm⁻³ (30). The volumetric heat capacity, σ , is given by

$$\sigma = dc_p \tag{4}$$

Densities were measured on a Sodev Inc. Model 01D densimeter (24). The mean temperature of the experiment was 25 °C. All ternary solutions were prepared so as to be equimolal in each component.

Experimental data, obtained as σ , were converted to c_p by using eq 4 and these were converted to apparent molar heat capacities by using (11)

$$C_{p,\phi} = Mc_{p} + (c_{p} - c_{p}^{\circ})/m$$
 (5)

where *M* is the molar mass of the solute and *m* is the molality of the solution. Consistent units are important in eq 5: for instance, *M* in kg mol⁻¹; c_p in J kg⁻¹ K⁻¹; and *m* in mol kg⁻¹.

Results

The results, in terms of m and $C_{\rho,\phi}$ for our two series of measurements, are presented in Tables I and II. These data were then least-squares fitted to

$$C_{p,\phi} = C_{p,\phi}^{\circ} + c_2 m + c_3 m^2 \tag{6}$$

The values of $C_{\rho,\phi}$, c_2 , and c_3 are presented in Table III. Also included there are σ (the standard error of the fit), the molality range of the fitted data sets, comparable literature data (when available), and, for ternary systems, $C_{\rho,\phi}$ (add), which is the arithmetic mean of $C_{\rho,\phi}$ for the corresponding binary systems and provides a means for checking the internal consistency of the data. Using eq 6 and the coefficients generated by the fitting procedure, we calculated values of $C_{\rho,\phi}$ corresponding to the experimental molalities. These values are given

Table II.	Results of I.R.T. for Apparent Mo	ar Heat Capacities, $C_{p,\phi}$ (J mol ⁻¹ K ⁻	¹), of Aqueous Nonelectrolyte Systems ^a
	······		
		•	

mb	C	C (calad)		b	<u> </u>	<u>(</u>	·
<i>m</i> ~	$U_{p,\phi}$	$U_{p,\phi}(\text{calc}\alpha)$		m°		$U_{p,\phi}(\text{calcd})$	<u>د</u>
0 1004	Dimethylfor	mamide (DMF)	0.01	0.17/40	250.70	+ 1N 250.47	0.00
0.1000	200,41	100.20	0.21	0.1/40	209.70	209.47	0.23
0.3937	198.47	198.03	-0.06	0.5584	209.08	259.58	0.00
0.5847	196.60	196.89	-0.29	0.5074	259.27	259.70	-0.43
0.7963	195.06	195.07	-0.01	0.6714	259.72	259.81	-0.09
1.0158	193.35	193.19	0.16	0.8292	260.20	259.92	0.28
0.4100	Forma	mide (F)	0.00	0.1404	DMF +	- MAN	0 50
0.4108	80.18	80.27	-0.09	0.1606	316.26	316.76	-0.50
0.8366	83.03	82.88	0.15	0.3194	316.67	316.21	0.46
1.2678	85.33	85.34	-0.01	0.4782	315.63	315.67	-0.04
1.7400	87.77	87.80	-0.03	0.6350	314.82	315.13	-0.31
2.1441	89.63	89.71	-0.08	0.7999	315.87	314.56	1.31
2.6773	92.02	91.97	0.05	0.9771	313.02	313.95	-0.93
He	examethylene	etetramine (HMT	.)		DMF	+ T	
0.3430	156.28	156.09	0.19	0.0853	183.53	183.28	0.25
0.4651	156.08	156.42	-0.34	0.1507	182.38	182.89	-0.51
0.6369	157.13	156.88	0.25	0.2462	182.47	182.33	0.14
0.8138	157 19	157.36	-0.17	0 3177	182.17	181 90	0.27
1 0025	157 94	157.87	0.17	0.3960	181 36	181.44	-0.08
1.0025	107,94	107,07	0.07	0.4861	180.83	180.90	-0.07
0 1006	Triox	ane (T) 163-40	0.45		г Т	HMT	
0.1000	169.00	169 61	0,40	0.0601	100.96	100.01	0.95
0.1291	104.07	104.01	-0.54	0.0001	100.40	100.00	0.20
0.2999	101.47	101,80	-0.33	0.1096	100 10	109.20	-0.04
0.3996	161.39	160.99	0.40	0.1582	109.15	109.38	-0.23
0.4966	160.31	160.21	01.0	0.2037	109.44	109.56	-0.12
0.5992	159.30	159.38	-0.08	0.2550	109,61	109.75	-0.14
	CHEX	+ DMF		0.3078	110.23	109.95	0.28
0.0985	337.10	337.50	-0.40		\mathbf{F} +	IN	
0.1925	337.15	336 26	0.89	0.3378	201.74	201.44	0.30
0.2769	333 67	335 14	-147	0.5099	202.83	203.01	-0.18
0.3921	335.98	333 61	1 67	0.6793	204.62	204 74	-0.12
0.4661	330.20 339 EN	329 61	_014	0.0100	205.80	206.94	-0.14
0.5784	330 61	331 16	-0.14 -0.55	0.0042	208.26	207.82	0.44
0.0101	000.01	V F	0.00	0.0000		201.02 MAN	0.11
0 1990	079 0C	A + F 079 64	<u>^ 10</u>	0.1702	ר + 1 סבת הס	950.01	0.00
0.1440	213.20	210.04	-0.38	0.1140	200,90	200,01	0.02
0.2466	273.43	273.08	0.35	0.3369	201.00	202.21	0.09
0.3617	272.94	272.55	0.39	0.4266	201.27	201.38	-0.11
0.4723	271.68	272.05	-0.37	0.5094	251.49	251.53	-0.04
0.5989	271.59	271.47	0.12	0.6700	251.82	251.33	-0.01
0.7230	270.80	270.91	-0.11	0.8318	252.18	252.13	0.05
0.1010	CHEX	+ HMT		0.10//	F +	- T	
0.1016	311.51	312,22	-0.71	0.1844	117.75	117.68	0.07
0.2007	311.01	311.20	-0.19	0.3441	117.45	117.36	0.09
0.2996	312.05	310.19	1.86	0.5033	116.91	117.05	-0.14
0.4002	308.74	309.16	-0.42	0.6673	116.65	116.72	-0.07
0.4978	307.74	308.17	-0.43	0.8266	116.35	116.40	0.05
0.6040	306.98	307.08	-0.10	1.1527	115.85	115.75	0.10
	CHE	X + T			HMT	+ IN	
0.1087	316.03	316.03	0.00	0.1018	242.01	241.90	0.11
0.4508	313.67	313.38	0.29	0.2010	242.09	242.81	-0.72
0.5728	311.77	312.44	-0.67	0.3049	244.28	243.76	0.52
0.6614	312.13	311.75	0.38	0.4000	244.90	244.63	0.27
		n . n		0.4986	245.74	245.54	0.20
0.00.		F + F		0.5997	246.07	246.46	-0.39
0.2248	138.77	138.73	0.04				
0.3957	137.90	138.01	-0.11		HMT +	MAN	
0.6209	137.34	137.24	0.10	0.2018	295.58	295.63	-0.05
0.7930	136.82	136.80	0.02	0.3012	295.51	295.60	-0.09
0.9708	136.40	136.47	-0.07	0.4030	295.67	295.58	0.09
1.2696	136.22	136.20	0.02	0.5009	295.87	295.55	0.32
	DMF	+ HMT		0.5968	295.26	295.52	-0.26
0.0534	179.80	178.04	1.76		HMT	+ T	
0.1002	177.83	178.23	-0.40	0.0984	161.86	162.02	-0.16
0.1480	178.68	178.43	0.25	0.1968	161.55	161.79	-0.24
0.1965	177.91	178.63	-0.72	0.2989	162.09	161.54	0.55
0.2943	177.74	179.04	-1.30	0.3999	161.29	161.30	-0.01
0.2070	177.58	179.47	-1.89	0.4988	161.21	161.07	0.14
0.3979			2.00	0.5001	100 50	100.01	0.00
0.3979	181.76	179.88	1.88	0.5931	100.00	160.84	

Table II	(Continue	ed)
----------	-----------	-----

m^b	$C_{p,\phi}$	$C_{p,\phi}(\text{calcd})$	Δ	m^b	$C_{p,\phi}$	$C_{p,\phi}(\text{calcd})$	Δ
	IN	+ T			MAI	$\mathbf{V} + \mathbf{V}$	
0.1496	242.84	242.82	0.02	0.1468	296.87	296.83	0.04
0.3007	243.17	243.27	-0.10	0.2991	296.39	296.29	0.10
0.4491	243.77	243.70	0.07	0.4487	295.63	295.75	-0.12
0.5997	244.22	244.14	0.08	0.6009	295.15	295.21	-0.06
0.7496	244.52	244.58	-0.06	0,7468	294.53	294.68	-0.15
0.9016	245.02	245.03	-0.01	0.8901	294.36	294.17	0.19

^a Systems are presented in alphabetical order. ^b Units: mol kg^{-1} .

in Tables I and II as $C_{p,\phi}$ (calcd) together with Δ (the difference between experimental and calculated $C_{p,\phi}$), which gives a measure of the fidelity of the fitted equation to the experimental data.

Discussion

The results of this work were examined both in terms of internal consistency and in terms of agreement with available literature data. Internal consistency of our data may be inspected in two ways. First, the agreement between systems measured by different experimentalists can be observed. Second, the internal consistency of each data subset, as indicated by the comparison of additivity of $C_{\rho,\phi}$ ° from binary systems with the experimental $C_{\rho,\phi}$ ° for ternary systems, can be checked.

From the scatter of the individual measurements for each solute we have calculated the 95% confidence limits of $C_{\rho,\phi}^{\circ}$. The values for the 95% confidence limits in Table III vary from 0.2 to 4.5 and these values are in good agreement with the expected random errors in the calorimeter. The error limit is consistent with the differences between duplicate measurements by different experimentalists: for the 10 systems measured by both S.K.S. and T.R.T., the differences in $C_{\rho,\phi}^{\circ}$ vary from 0.14 to 7.6 J mol⁻¹ K⁻¹. This limit of error is consistent with previous results from the literature using the Picker calorimeter (40).

The consistency of the c_2 coefficients of the molality expansion for these 10 systems is also very good. Eight systems have c_2 's within 95% confidence limits of each other (MAN, HMT, T, F + HMT, F + MAN, HMT + MAN, HMT + T, T + MAN) while a ninth (F + T) is only marginally beyond this. For the remaining system (F), a triplet term, c_3 , may have affected the fitting process.

Viewing the internal consistency of the individual subsets in terms of the additivity of the limiting property $C_{\rho,\phi}$ ° where we must have

$$C_{\rho,\phi}^{\circ}(\text{add})(A + B) = \{C_{\rho,\phi}^{\circ}(A) + C_{\rho,\phi}^{\circ}(B)\}/2$$
 (7)

we see that except for DIOX + HMT, most of the systems agree within 2 or 3 J mol⁻¹ K⁻¹ and the maximum difference is 6.5 J mol⁻¹ K⁻¹.

Having established the internal consistency of the data we now compare our measurements with the literature values available for six of the binary systems, acetamide (AC), acetone (AN), dioxane (DIOX), dimethylformamide (DMF), ethyl acetate (EA), and *s*-trioxane (T) (see Table III). Looking first at the c_2 coefficients, we find that in every case agreement is within stated (or reasonably assumed) 95% confidence limits. This agreement lends confidence to values of c_2 which we obtained for the ternary systems (for which there are no data for literature comparison).

However, comparison of the present measurements with literature values of $C_{\rho,\phi}^{\circ}$ raises some concern. For many of the aqueous nonelectrolyte solutions reported here, the values of the apparent heat capacity, $C_{\rho,\phi}$, are 12–25 J mol⁻¹ K⁻¹ lower than literature values. While this much error is common with previous measurement techniques (40), it is much higher

than expected for the present calorimeter. The above errors correspond to directly measured relative changes in volumetric heat capacity, $\Delta\sigma/\sigma_0$, that are high by as much as 40% (for acetone) and of the wrong sign in another case (ethyl acetate) where the value of $\Delta\sigma$ is very close to zero. These figures are inconsistent with the rated accuracy of this calorimeter of 1% in $\Delta\sigma/\sigma_0$.

We have been unable to find any experimental error in the present results that could have caused this discrepancy. Possible experimental errors and the reasons that we do not think they were a source of error in the present results are discussed below.

1. Solution Makeup. There are many examples in Table III of where two different experimenters made completely independent measurements on the same solute with results that agree within the expected accuracy of 1%. In addition, the concentrations of these solutions calculated from the experimental densities of the solutions, and literature values of the apparent molar volumes, agree ($\pm 0.2\%$ or less) with the molality calculated from the weights of solute and solvent, used to make up the solution.

2. Heat Leak Correction Factor. The heat leak correction factor, $f = 1.04 \pm 0.025$, has been determined by four different investigators over the course of 3 years. R.H.W. found f = 1.042 using 3 mol kg⁻¹ aqueous NaCl as a chemical standard just after the calorimeter was purchased. Later, S.K.S. found *f* values of 1.040, 1.042, 1.048, and 1.038 using aqueous NaCl with concentrations near 0.1, 0.3, 0.05, and 1.0 mol kg⁻¹ NaCl. Near the end of the 3-year period, I.R.T. found *f* values of 1.047, 1.044, and 1.059 using NaCl as the chemical standard, and 1.015 and 1.040 using KCl as the chemical standard. In addition, Coe found 1.044 using KCl as the standard (41).

3. Vacuum. The single-stage vacuum pump used by S.K.S. routinely gave pressures from 1 to 4 Pa while the two-stage pump used by I.R.T. gave pressures near 0.1 Pa. In the original checkout of the instrument, it was found that, with 3 mol kg⁻¹ NaCl, pressures of 1 and 3 Pa gave identical results, $\pm 0.5\%$. In fact, even running the calorimeter at 10⁵ Pa only increased the heat leak correction factor from 1.04 to 1.09. This general insensitivity of the instrument to the quality of the vacuum, together with the fact that this error is of the wrong sign to explain our results, indicates that the quality of the vacuum is not the problem.

4. Power Level. Most of our experiments were run at a power level of 110 mW. For aqueous acetamide, runs using 20 mW gave identical results.

5. Flow Rate. The two sets of experiments reported here used flow rates differing by about 50%, and yet the results agree. In addition, the instrument was routinely adjusted, so that change in the flow rate of as much as 10% produced no change in the base line.

6. Volume Change at the Water-Solution Interface. Errors can be caused by changes in volume at the solutionsample interface, although these are generally negligible for aqueous solutions (14). This effect causes errors of opposite sign when the solution is used as a reference rather than pure water. The measurements of I.R.T. were always made both

					σ, b		
	c °	$C \sim (add)^{\alpha}$	0	C_{3}, C_{3}, C_{1}	J mol ⁻¹		
system	$J \operatorname{mol}^{-1} \mathrm{K}^{-1}$	$J \text{mol}^{-1} \text{K}^{-1}$	$J K^{-1} mol^{-2} kg$	mol ⁻³	K^{-1}	$mol kg^{-1}$	ref
	151 05 (0.70)6		1.26 (0.65)		0.25	0.16.1.90	eved
acetamide (AC)	163.8		-1.36(0.00) -1.38	0.12	0.55	0.16 - 1.62 0.05 - 8.0	31
	164.(2)		1.00	0.12		0.09-0.35	32
acetone (AN)	224.96 (1.08)		-9.83(1.05)		0.56	0.18-1.91	S.K.S.
	225		· · ·				33
	241.3		-7.64	0.279		0.0 - 27.0	31
dioxane (DIOX)	200.12(2.22)		-13.99(2.05)	1 100	1.52	0.14 - 2.11	S.K.S.
	222.4		-11.58	1.106		0.0-12.0	34 35
dimethylformamide	212 201 92 (0 76)		-86(11)		0.23	0 20-1 02	IR T ^e
(DMF)	225.1		-8.34		0.20	0.0-∞	36
ethyl acetate (EA)	372.97 (0.37)		-24.65(0.65)		0.11	0.17 - 0.87	S.K.S
	396.6		-22.1			0.0-0.9	11
formamide (F)	77.41(0.65)		3.25(0.64)	-0.63(0.27)	0.10	0.15 - 2.22	S.K.S.
	77.55 (1.61)		6.82 (0.90)	-0.54(0.29)	0.11	0.41 - 2.68	I.K.T.
nexamethylene-	147.52(0.66)		4.80(0.60)		0.34	0.17-1.97	S.K.S.
tetramine (HMT)	100.17(1.20)		2.69(1.73)		0.29	0.34 - 1.00	I.K.I.
mannitol (MAN)	432.46 (1.13)		1.10(1.99)		0.52	0.12 - 0.89	5, K. 5. IDT 20
	429.98 (1.70)		4.59 (8.15)		0.55	0.07 - 0.31 0.09 - 1.05	1.N.1., 38 20
s-trioxane (T)	170.08(0.92)		-10.82(0.75)		0.46	0.03 - 1.09 0.17 - 2.09	SKS
3 thomas (1)	164.21(1.14)		-8.06(2.95)		0.44	0.10-0.60	I.R.T.
	185		-9.2		0.6	0.10-1.06	37
AC + DIOX	176.43 (0.63)	176.04(0.73)	-6.80(0.55)		0.34	0.14 - 2.10	S.K.S.
AC + EA	262.21 (0.63)	262.46(0.54)	–14.38 (0.69)		0.30	0.14 - 1.56	S.K.S.
AC + F	116.03(1.32)	114.68(0.68)	-0.68(1.21)		0.68	0.13-1.99	S.K.S.
$AC + MAN^{f}$	292.49(0.91)	$292.21~(0.93)^{g}$	-1.71(0.86)		0.48	0.14-1.88	S.K.S.
AC + T	$161.76\ (3.65)$	161.02(0.81)	-6.29(3.17)		1.95	0.11 - 2.07	S.K.S.
$CHEX^{n} + DMF$	338.81(3.26)	$332.32(3.31)^{i}$	-13.23(8.76)		1.25	0.10 - 0.58	I.R.T.
CHEX + F	274.20(1.00)	$270.13(1.90)^{i}$	-4.55(2.14)		0.38	0.12-0.72	I.R.T.
CHEX + HMT	313.25(2.72)	$308.94(1.69)^{\circ}$	-10.22(6.98)		1.04	0.10-0.60	I.R.T.
CHEX + T	316.88 (2.94)	$313.46(1.66)^{\circ}$	-7.75 (5.94)		0.58	0.11-0.66	I.R.T.
DIOX + EA DIOX + F	283.15(3.74) 140.84(0.07)	286.55 (0.57)	-10.96 (6.55)		1.72	0.17 - 0.97	S.K.S.
DIOX + F DIOX + HMT/	140.04(0.97)	130.77(0.71) 172.89(0.71)	-5.17(0.99) 18.06(4.75)		0.47	0.29 - 1.82	S.K.S.
$DIOX + HMI^{*}$	203.33 (3.89)	173.02 (0.71) 316.29 (0.96)§	-10.90(4.70) -7.08(1.51)		1.73	0.22 - 1.45 0.12 - 2.07	S.K.S. SKS
DIOX + T	183.50(1.72)	185 10 (0.81)	-6.31(1.22)		0.92	0.12 - 2.07 0.18 - 2.30	SKS
DMF + F	139.86(1.01)	13974(203)	-5.50(1.22)	2.06(1.12)	0.00	0.10-2.00 0.22-1.27	IRT
DMF + HMT	177.82(2.30)	178.55(1.82)	4.15(6.82)	2.00 (1.12)	1.46	0.05-0.59	I.R.T.
$DMF + IN^k$	259.35(1.12)	$261.94(3.86)^{l}$	0.68(2.02)		0.33	0.17-0.83	I.R.T.
DMF + MAN	317.32(2.29)	$315.94(7.25)^m$	-3.45(3.65)		0.89	0.16-0.98	I.R.T.
$\mathbf{DMF} + \mathbf{T}$	183.79 (0.85)	183.07 (1.79)	-5.95(2.73)		0.33	0.09-0.49	I.R.T.
$\mathbf{E}\mathbf{A} + \mathbf{F}$	221.55(1.75)	225.19(0.51)	-9.87(2.13)		0.68	0.20 - 1.34	S.K.S.
EA + MAN	401.85 (1.98)	402.72 (0.76)	-13.25(2.38)		0.88	0.14 - 1.40	S.K.S.
EA + T	270.59 (0.74)	271.53(0.65)	-18.00(0.82)		0.36	0.14 - 1.58	S.K.S.
$\mathbf{F} + \mathbf{F} \mathbf{I} \mathbf{W} \mathbf{T}$	115.13(1.40) 108.78(0.65)	112.47(0.66) 116.26(1.41)	1.21(1.03)		0.76	0.14 - 2.44	S.K.S.
E IN	108.78(0.65)	110.30(1.41) 100.75(2.44)	3.80 (3.20)		0.24	0.06 - 0.31	I.K.I. IPT
F + IN F + MAN	256 07 (0.85)	254 94 (0 90) ^g	9.07(2.04) 0.73(0.85)		0.42 0.45	0.34 - 1.00 0 10 - 1 81	SKS
I T MININ	250.58 (0.22)	$253.77(1.66)^m$	1.87(0.00)		0.40	0.18-0.83	IRT
F + T	123.40 (1.08)	123.75 (0.79)	-3,41(0.97)		0.55	0.15-1.88	S.K.S.
	118.05(0.27)	120.88(1.38)	-1.99 (0.39)		0.11	0.18-1.15	I.R.T.
HMT + IN	240.96 (1.36)	$238.56(3.24)^l$	9.18 (3.48)		0.52	0.10-0.60	I.R.T.
HMT + MAN	290.55 (2.49)	$289.99 \ (0.91)^g$	-0.39(2.53)		1.41	0.09-1.93	S.K.S.
	295.69 (1.10)	$292.58(1.45)^m$	-0.27 (2.59)		0.25	0.20-0.60	I.R.T.
HMT + T	162.62(4.45)	158.80 (0.79)	-2.31(3.31)		2.35	0.16-2.50	S.K.S.
	162.25 (0.90)	159.69 (1.17)	-2.38(2.33)		0.35	0.10-0.59	I.R.T.
MAN + T	242.39(0.20)	$243.08(3.20)^{\circ}$	2.93 (0.34)		0.08	0.15-0.90	I.K.T. I.P.T
T T NERVEN	299.05(1.46)	$301\ 27\ (1\ 04)^g$	-2.64(1.43)		0.10 0.73	0.15-0.89	SKS
					V.IU	J, I U - I, UI	

Table III. Coefficients of Eq 5 for Experimental Data

^{*a*} For ternary systems of solutes A and B, $C_{p,\phi}^{\circ}(\text{add}) = \{C_{p,\phi}^{\circ}(A) + C_{p,\phi}^{\circ}(B)\}/2$. ^{*b*} Standard error of a single experiment. ^{*c*} Numbers in parentheses are the 95% confidence limits. ^{*d*} Results of S.K.S., this work. ^{*e*} Results of I.R.T., this work. ^{*f*} MAN = d-mannitol. ^{*g*} Calculated by using for mannitol, $C_{p,\phi}^{\circ} = 432.46 (1.15) + 1.1 (2.0) \text{ J mol}^{-1} \text{ K}^{-1}$ (value of S.K.S.). ^{*h*} CHEX = cyclohexanol. ^{*i*} Using $C_{p,\phi}^{\circ}(\text{CHEX}) = 462.71 \text{ J mol}^{-1} \text{ K}^{-1}$ (ref 38). ^{*j*} These data do not pass the additivity test so it should be used with caution. ^{*k*} IN = myoinositol. ^{*l*} Using $C_{p,\phi}^{\circ}(\text{IN}) = 321.95 \text{ J mol}^{-1} \text{ K}^{-1}$ (ref 38). ^{*m*} Using $C_{p,\phi}^{\circ}(\text{MAN}) = 429.98 \text{ J mol}^{-1} \text{ K}^{-1}$ (ref 38).

ways, and the results always agreed within experimental error. In only one case (ethyl acetate) was there any indication that this might have been a problem. For ethyl acetate, the noise level was very high and it took a long time to get a stable $\Delta\sigma/\sigma_0$ reading. This could have been due to effects at the solution-water interface. However, the use of an extra long delay loop

(so there was sufficient time for equilibration) gave the same results both with water and with solution as reference.

7. **Degassing.** The solutions were not routinely degassed for this study. Instead, a slight positive pressure was used to reduce bubble formation. Several check runs with degassed solutions produced identical results. In addition, bubble for-

8. Operator Error. Four different operators (the present authors plus James Coe (41)) have used this instrument over the past 3 years and obtained identical results for the chemical standards. Also, Table III gives several examples of two experimenters getting the same results using our calorimeter.

It is troublesome to report results that are not as accurate as expected. We report these values for three reasons: (1) For many systems these are the only measurements of the apparent molar heat capacity and they are as accurate as many of the results from other measuring techniques (40). (2) The values of the coefficient c2 agree with literature values, and these are worth reporting in their own right. (3) The widespread use of this type of calorimeter for measuring the apparent molar heat capacities makes it important to alert other investigators to a problem with this instrument.

squares fits of the data.

EA, 141-78-6; F, 75-12-7; HMT, 100-97-0; T, 110-88-3; MAN, 69-65-8; IN, 87-89-8; CHEX, 108-93-0; methyl formate, 107-31-3.

Literature Cited

856.

- Tasker, I. R.; Wood, R. H. J. Phys. Chem. **1982**, 86, 4040. Tasker, I. R.; Wood, R. H. J. Solution Chem. **1982**, 11, 295. Tasker, I. R.; Wood, R. H. J. Solution Chem. **1982**, 11, 469.
- (2) (3)
- Tasker, I. R.; Wood, R. H. J. Solution Chem. 1982. 11, 481.
- Tasker, I. R.; Wood, R. H. J. Solution Chem. 1982, 11, 729. (5)
- (6)
- (7)
- Phillip, P. R.; Desnoyers, J. E. J. Solution Chem. 1972, 1, 353.
 Frank, H. S.; Wen, W.-Y. Discuss. Faraday Soc. 1957, 24, 133.
 Leduc, P.-A.; Fortier, J.-L.; Desnoyers, J. E. J. Phys. Chem. 1974, (8) 78. 1217 (9)
- Leduc, P.-A.; Desnoyers, J. E. Can. J. Chem. 1973, 51, 2993. (10) Desrosiers, N.; Perron, G.; Mathieson, J. G.; Conway, B. E.; Desnoy-ers, J. E. J. Solution Chem. 1974, 3, 789.
- (11) Roux, G.; Perron, G.; Desnoyers, G. Can. J. Chem. 1978, 56, 2808. (12) DeVisser, C.; Perron, G.; Desnoyers, J. E. Can. J. Chem. 1977, 55,

(23)

Acknowledgment

We express our thanks to Patricia Bunville for the least-

Registry No. AC, 60-35-5; AN, 67-64-1; DIOX, 123-91-1; DMF, 68-12-2;

- (13) Roux, G.; Perron, G.; Desnoyers, J. E. J. Phys. Chem. 1978, 82, 966. (14) Fortier, J.-L.; Benson, G.; Picker, P. J. Chem. Thermodyn. 1978, 8, 289.
- (15) Perron, G.; Fortler, J.-L. Desnoyers, J. E. J. Chem. Thermodyn. 1975, 7, 1177.
- (16) Picker, P.; Leduc, P.-A.; Philip, P. R.; Desnoyers, J. E. J. Chem. Thermodyn. 1971, 3, 631.
- (17) Smith-Magowan, D.; Wood, R. H. J. Chem. Thermodyn. 1981, 13, 1047
- (18) Wood, R. H.; Quint, J. R.; Grolier, J.-P. E. J. Phys. Chem. 1981, 85, 3944. (19) Mayrath, J. E.; Wood, R. H. J. Chem. Thermodyn. 1982, 14, 563.
- White, D. E.; Wood, R. H. J. Solution Chem. 1982, 11, 223. (20)
- Mayrath, J. E.; Wood, R. H. J. Chem. Thermodyn. 1982, 14, 15.
 Smith-Magowan, D.; Wood, R. H.; Tillett, D. M. J. Chem. Eng. Data 1982, 2. 335.
- Wood, R. H.; Smith-Magowan, D. "Thermodynamics of Aqueous Systems with Industrial Applications"; Newman, S. A., Ed.; American Chemical Society: Washington, D.C, 1980; ACS Symp. Ser. No. 133. p 569.
- (24) Tasker, I. R.; Spitzer, J. J.; Suri, S. K.; Wood, R. H. J. Chem. Eng Data 1983, 28, 266. (25)
- Picker, P. Can. Res. Dev. 1974, 7, 11. (26)
- Desnoyers, J. E.; de Visser, C.; Perron, G.; Picker, P. J. Solution Chem. 1978, 5, 605. (27)
- Fortier, J. L.; Benson, G. C. J. Chem. Thermodyn. 1978, 8, 411. (28) Sodev Inc., 1079 St.-Esprit, Sherbrooke, Quebec J1K 2K4, Canada.
- (29)
- (30)
- Stimson, H. F. *Am. J. Phys.* **1955**, *23*, 614. Kell, G. S. *J. Chem. Eng. Data* **1987**, *12*, 66. Kiyohara, O.; Perron, G.; Desnoyers, J. E. *Can. J. Chem.* **1975**, *53*, (31)
- 3263 (32) Sköld, R.; Suurkuusk, J.; Wadsö, I. J. Chem. Thermodyn. 1978, 8, 1075.
- (33) Arnaud, P.; Avékikian, L.; Morel, J. P. J. Chim. Phys. Phys.-Chim.
- Biol. 1972, 1, 45. (34) Klyohara, O.; Perron, G.; Desnoyers, J. E. Can. J. Chem. 1975, 53, 2951
- (35) Cabani, S.; Conti, G.; Martinelli, A.; Matteoli, E. J. Chem. Soc., Faraday Trans. 1 1973, 69, 212.
- de Visser, C.; Perron, G.; Desnoyers, J. E.; Heuvelsland, W. J. M.; (36) (30) Visson, G. J. Chem. Eng. Data 1977, 22, 74.
 (37) Perron, G.; Desnoyers, J. E. Can. J. Chem. 1981, 59, 2599.
 (38) Tasker, I. R.; Wood, R. H. J. Solution Chem. 1983, 12, 315.
 (39) Dipaola, G.; Belleau, B. Can. J. Chem. 1977, 55, 3825.

- (40) Roux, G.; Roberts, D.; Perron, G.; Desnoyers, J. E. J. Solution Chem. 1980, 9, 629.
- Coe, James. Honors Thesis, Swarthmore College, Swarthmore, PA, (41)April 1980.

Received for review April 13, 1983. Accepted October 26, 1983. This work was supported by the National Science Foundation under grant nos. CHE77-10624 and CHE80-09672.